16,447 research outputs found

    Charged Higgs bosons in Minimal Supersymmetry: Updated constraints and experimental prospects

    Full text link
    We discuss the phenomenology of charged Higgs bosons in the MSSM with minimal flavor violation. In addition to the constrained MSSM (CMSSM) with universal soft supersymmetry breaking mass parameters at the GUT scale, we explore non-universal Higgs mass models (NUHM) where this universality condition is relaxed. To identify the allowed parameter space regions, we apply constraints from direct searches, low energy observables, and cosmology. We find that values of the charged Higgs mass as low as mH+ 135m_{H^+}\simeq~135 GeV can be accommodated in the NUHM models, but that several flavor physics observables disfavor large H+H^+ contributions, associated with high tanβ\tan\beta, quite independently of MSSM scenario. We confront the constrained scenarios with the discovery potentials reported by ATLAS and CMS, and find that the current exclusion by indirect constraints is similar to the expected LHC discovery reach with 30 fb1^{-1} of data. Finally, we evaluate the sensitivity of the presented discovery potential to the choice of MSSM benchmark scenario. This sensitivity is found to be higher in the case of a light (mH+<mtm_{H^+}<m_t) charged Higgs.Comment: 33 pages, 17 figures, v2: Minor revision, agrees with published versio

    Frequency tuning, nonlinearities and mode coupling in circular graphene resonators

    Full text link
    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to geometrical nonlinearity these can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for eigenfrequencies and nonlinear coefficients as functions of radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings.Comment: 21 pages, 7 figures, 3 table

    Bottom-up derivation of an effective thermostat for united atoms simulations of water

    Full text link
    In this article we derive the effective pairwise interactions in a Langevin type united atoms model of water. The interactions are determined from the trajectories of a detailed molecular dynamics simulation of simple point charge water. A standard method is used for estimating the conservative interaction, whereas a new "bottom-up" method is used to determine the effective dissipative and stochastic interactions. We demonstrate that, when compared to the standard united atoms model, the transport properties of the coarse-grained model is significantly improved by the introduction of the derived dissipative and stochastic interactions. The results are compared to a previous study, where a "top-down" approach was used to obtain transport properties consistent with those of the simple point charge water model.Comment: Submitted to J. Chem. Phy

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    H^\pm W^\mp production in the MSSM at the LHC

    Full text link
    We investigate the viability of observing charged Higgs bosons (H^\pm) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal Supersymmetric Standard Model. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^\pm masses (~ m_t).Comment: 3 pages, LaTeX, 4 eps figures, uses jpconf.cls, talk given by S. Hesselbach at the 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 200

    Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence

    Get PDF
    Abstract. We unify the formulation and analysis of Galerkin and Runge–Kutta methods for the time discretization of parabolic equations. This, together with the concept of reconstruction of the approximate solutions, allows us to establish a posteriori superconvergence estimates for the error at the nodes for all methods. 1

    The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads

    Get PDF
    An increasing worldwide interest in water recycling technologies such as greywater treatment and reuse suggests that additional research to elucidate the fate of xenobiotics during such practices would be beneficial. In this paper, scenario analyses supported by empirical data are used for highlighting the potential fate of a selection of xenobiotic micropollutants in decentralised greywater treatment systems, and for investigation of the possible implications of greywater recycling for the wider urban water cycle. Potential potable water savings of up to 43% are predicted for greywater recycling based on Danish water use statistics and priority substance monitoring at a greywater treatment plant in Denmark. Adsorption represents an important mechanism for the removal of cadmium, nickel, lead and nonylphenol from influent greywater and therefore the disposal route adopted for the generated sludge can exert a major impact on the overall efficiency and environmental sustainability of greywater treatment
    corecore